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LE’ITER TO THE EDITOR 

Depinning from the internal defect in the planar Ising model 

D B Abraham? and N M SvrakiEt$ 
t Department of Theoretical Chemistry, University of Oxford, 1 Keble Road, Oxford 
OX1 3NP, UK 
$ Institute of Physics, PO Box 57, 1 I000 Beograd, Yugoslavia 

Received 10 September 1985 

Abstract. An exact analysis of depinning of the domain wall from the internal defect in 
the planar Ising model is given. The model differs from the ones previously studied by 
having unequal couplings on two sides of the defect. This asymmetry induces a depinning 
transition at a well defined temperature. The exact phase diagram and incremental free 
energy are obtained. 

The binding of a domain wall by a line of defect bonds in the planar Ising ferromagnet 
below its Curie temperature T, has been the subject of much recent study (Abraham 
1980, 1981a, b, Burkhardt 1981, Chalker 1981, Kroll 1981, Chui and Weeks 1981, van 
Leeuwen and Hilhorst 1981, SvrakiE 1983). In particular, Abraham (1980, 1981b) has 
analysed this problem rigorously in considerable detail and has shown that (i) a line 
of defect bonds in the interior of the lattice always binds the wall, while (ii) when the 
defect is near the surface of the lattice, the wall will be bound to it at sufficiently low 
temperatures and will unbind from the defect when the temperature is increased above 
a certain value TR< T,. It is said that an unbinding (depinning, wetting) transition 
takes place at T = TR. Associated with this transition is a jump in the domain-wall 
specific heat. 

In this letter we propose analysing exactly the binding (and unbinding) of the 
domain wall by the defect in the interior of the planar Ising lattice, but with bonds 
which differ on two sides of the defect. This problem represents a generalisation of 
the original unbinding model (Abraham 1980) and cases (i)  and (ii) above are obtained 
in appropriate limits. Thus, by taking various limits we can study within a single 
framework two seemingly unrelated problems: (i) depinning of the domain wall 
(Abraham 1980) and (ii) non-universal behaviour of the defect at T = T, (McCoy and 
Perk 1980). Moreover, in realistic materials pinning usually occurs at the boundary 
between two different domains. Our model corresponds to that situation. This has 
provided motivation for our work. 

In order to set up the problem to be solved consider a planar Ising ferromagnet 
with spins a(i)  = 5 1  at all points ( i l ,  i 2 )  of a subset A of E’ of the infinite square lattice 
withunit side. Thelatticeisspecifiedsothat A={(il,i2): - N s i I s N - l ,  - M s i 2 <  
M - 1). The energy of a spin configuration {a}  is given by 

~ , ( { a } )  = 1 J ( i - j ) a ( i ) a ( j ) - z  h ( i ) a ( i )  (1) 
l i - j l= l  

where J( k) are ferromagnetic (non-negative) couplings and h (  i )  are external magnetic 
fields. The probability of the configuration {a}  is given by 

pA({a)) = 2,’ exp[-PE({d)l  (2) 
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with /3 = l/kBT ( k B  is the Boltzmann constant, T is the absolute temperature) and 
is the partition function which normalises (2). It is convenient to denote K ( i - j )  = 
p J (  i - j ) .  

If ( ) , ,(h,  T )  denotes expectation with respect to (2) then, provided T < T, (Peierls 
1936, Dobrushin 1968, Griffiths 1964, Martin-Lof 1972, Yang 1952, Bennettin et a1 
1973, Abraham and Martin-Lof 1973), 

lim lim ( ~ ( 0 ,  O)),(h, T) = m” 
h-Ot A-m 

(3 )  

where m* is the spontaneous magnetisation. The same limiting result is obtained when 
h( i) = 0 for all i except those at the boundary aA of the lattice where h (  i) = CO and 
only configurations with u ( i ) = + l  on dA contribute to (2). A-CO means that (0,O) 
becomes infinitely far from the boundary. 

In order to study phase separation we will consider boundary conditions B l -  on 
the lattice A so that a( i )  = + 1  (respectively u( i) = -1) for i E d A  whenever i 2 >  0 
(respectively i2<0). As A + C O  we expect a phase of magnetisation m* (respectively 
-m*) far above (below) the line i 2 = 0 .  The domain-wall free energy is defined as 

where Z (  B i + )  normalises (2) with all boundary spins a( i) = $1 ( i  E aA). 

be used: 
In order to further specialise to the problem at hand the following notation will 

J ,  
J ( ( i l ,  i 2 ) ;  ( j , ,  j2) l  = J2 

for all i,, j ,  < 0 and il = j, = 0 
for all i , ,  j, > 1 and i ,  = j ,  = 1 { Jo for all il = 0, j ,  = 1 

i.e. on one side of the defect ( J o )  bonds have strength J ,  and on the other side strength 
J 2 .  (This choice is made only to simplify various algebraic equations which follow. 
We have actually studied a situation in which ‘orthogonal’ and ‘parallel’ bonds in the 
J ,  half-plane are different-likewise for the J2 half-plane-but this merely increases 
the complexity of the equations without giving additional insight.) Clearly when J1 = J2 
the model reduces to the case with the internal defect. Such a defect binds the wall 
at all temperatures O <  T <  T, (Abraham 1981b). Here an interesting phenomenon 
occurs at T = T, when the spin-spin correlation function exponent shows continuous 
dependence on the defect coupling strength. 

On the other hand, when, for example, Jl = CO, the defect is positioned next to the 
fully ordered system (‘surface’) (Abraham 1980) from which the domain wall unbinds 
at a temperature given by equation (6) below (equation (8) of Abraham (1980)). 
Clearly, if the defect coupling strength Jo = J 2 ,  unbinding occurs at T = 0 since, in the 
absence of the defect, the wall has no preference to be bound for any particular place 
in the lattice. In what follows we shall assume, without loss of generality, that J ,  c J2 
and Jo = aJz (0 S a S 1)  (thus Jo < J2 < J , ) .  The new result of this letter is that the 
domain wall unbinds from the internal defect whenever J1 f J2 at some temperature 
TR < T,, where T, solves the equation sinh’ 2K2 = 1 .  Explicitly, let K i  = pJi ( i  = 0, 1,2) 
and let b = J2/J1 (by the above assumption 0 s  b G 1). Then the unbinding transition 
temperature TR(a, b )  is given as the non-trivial solution of the equation 
sinh 2KT+ (sinh2 2K1 - l)/{sinh 2K1 +[c:(sinh2 2K, - 1)2+  1]1’2} 

= cosh 2( K2 - K : )  (5) 
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where 

~1=cosh2K1[(1-A,) / ( l+A,)]  

and 

A,  = tanh' K1 tanh' K2/tanh4 K O .  

Note that, when K ,  =CO,  ( 5 )  reduces to (Abraham 1980, equation (8)) 

tanh' KO = tanh K 2  tanh( K 2  - K T) ( 6 )  
where exp 2Ki = coth KT ( i  = 1,2)  is the dual coupling. Also, equation ( 5 )  becomes 
identity when K1 = K 2  = 0.5 sinh-'(1) for all K O .  

Equation ( 5 )  gives the phase boundary for depinning of the domain wall into the 
(weaker) J2 half-plane. This phase boundary is plotted in figure 1 for several values 
of the parameter b ( b  = J 2 / J 1 ) .  Note that only when b becomes quite close to unity 
does the transition temperature TR( a, b )  begin to approach the critical temperature T, 
appreciably. Other limiting behaviours are also apparent in figure 1. (i) When a = 0, 
i.e. when Jo = 0, we have two separate king half-planes and boundary conditions are 
irrelevant. Then TR= T, since the spontaneous magnetisation vanishes at T,. (ii) 
When a = 1, i.e. when Jo = J 2 ,  the defect is of equal strength to the bulk ( J 2 )  and cannot 
pin the wall at any finite temperature: hence TR(l, b) .  (iii) Finally, when b = 1, i.e. 
when J1 = J 2 ,  the symmetric situation on two sides of the defect prevents depinning 
into any one half-plane (Abraham 1981b) and T,(a, 1) = T,, which is the temperature 
at which the difference between two phases disappears. 
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Figure 1. Phase diagram for depinning into the J, half-plane. Parameter a ( a  = Jo/J2)  is 
along the x axis. Parameter b ( b  = J 2 / J , )  is 0.5 and 0.99. This diagram is to be compared 
with figure 1 of Abraham (1980). 
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The incremental free energy T is calculated from (4). By the use of the transfer 
matrix theory and recently developed techniques (Abraham 1978a, b, 1980) it can be 
shown that T takes the usual Onsager (1944) values for TR( U,  6 )  < T < T,, but the 
second temperature derivative, or the domain-wall specific heat, exhibits a jump 
discontinuity at TR(a, b) .  The domain-wall free energy T has a value In B ( B  = 
tanh KT coth K 2 )  for TR(u, b )  < T <  T, and the value (uo( for O <  T <  TR(a, b ) ,  where 
uo solves the equation 

cosh(2KT-y,(w))-cosh 2Kl co~h(2K$-y2(w))-cosh 2K2 
cosh(2KT+y1(w))-co~h 2K1 cosh(2K:+y2(w))-cosh2K2 

= tanh’ K ,  tanh2 K,/tanh4 KO (8) 

cosh y,(w)=cosh2KTcosh2Ki-sinh2KT sinh2Ki cos w i = l , 2  (9) 

where ? , ( U )  are Onsager’s functions (Onsager 1944) given by 

and exp 2Ki = coth KT.  Figure 2 shows the domain-wall free energy T calculated from 
(7), (8) and (9) for U = 0.6, b = 0.5 and b = 0.99. In the same figure the interfacial free 
energy (‘surface tension’) ( U  = 1, b = 1) is shown (Onsager 1944) for comparison. Note 
that T coincides with ‘surface tension’ for temperatures T >  TR(u, b) .  In the limit b = 1, 
i.e. K, = K2 = K,  the incremental free energy, as given by (7), vanishes at TR( 1, a )  = T, 
as 

UO = U( K - K , )  (10) 

2.0 

N 

k 
t- 
. 

1.0 

0 1 2 
k, T ’ I J ,  

Figure 2. Incremental (defect, domain wall) free energy as a function of temperature. Note 
that this free energy merges with Onsager’s ‘surface tension’ at T =  TR for a =0.6, from 
figure 1.  
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where K, solves sinh 2K,* sinh 2K, = 1. We note, firstly, that the domain-wall free 
energy vanishes linearly as T approaches T,, which is consistent with scaling (/A = 1) 
and, secondly, that the coefficient U depends on the value of the defect coupling ( J o )  
as 

(11) 2 1/2 
(+ = gOnsager( 1 - K 1 

where uOnsager is the Onsager’s amplitude gOnsager = 4 and 

K = (tanh2 KO-tanh’ K)/(tanh2 Ko+tanh2 K )  

evaluated at K = K,. 
The dual of the partition function ratio in (4) is a correlation function for the pair 

of spins at a distance d along the line of enhanced (defect) bonds. At T = T, (with 
b = 1) it is known (McCoy and Perk 1980, Bariev 1979) that the corresponding exponent 
7 of the correlation function depends continuously on the value of the defect coupling 
strength. This non-universality is also seen in the amplitude dependence given by (1 1) 
and (12). The method presented in this letter enables one to study non-universal 
behaviour of line defects with considerable ease. 

Finally, let us consider a solid-on-solid limit of the problem just solved. 
(i) In the case b = 0 (i.e. K, =CO) the solid-on-solid (SOS) limit corresponds to the 

quantum mechanical problem of the particle moving in the semi-infinite potential well 
(i.e. a well of finite depth with one infinite wall). 

(ii) In the case b = 1 we have a simple well for which there is always a bound state 
(the interface is always pinned). 

(iii) The model we have studied corresponds to the well with unequal (but finite) 
walls. This SOS version of the problem has been studied elsewhere (Wolff and Svrakii: 
1984). 
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